Rabu, 21 Agustus 2013

Fakta Penting Tentang Aurora

 Kita sering mendengar istilah aurora, tetapi kita tidak tahu apa itu aurora dan lain sebagainya.Nah, di bawah ini akan dijelaskan sedikit informasi tentang aurora.

Apa itu Aurora? Mengapa terjadi aurora? Fenomena aurora sangat terkait dengan interaksi yang terjadi antara matahari dengan bumi kita. Reaksi fusi yang terjadi di matahari, selain menghasilkan energi termonuklir, juga menghasilkan positron (e+), e-neutrino (ne), dan sinar gamma. Selain itu, inti hidrogen atau proton, inti helium, dan beberapa partikel lainnya juga ikut dipancarkan akibat tekanan radiasi yang sangat besar. Pancaran partikel-partikel bermuatan yang memiliki energi tinggi dari matahari dikenal dengan istilah angin matahari atau solar wind. Partikel-partikel tersebut bergerak dengan kecepatan 300.000-1000.000 m/s dan kerapatan 0,1-30 cm2.

Fenomena Aurora
Angin matahari tidak dapat langsung menyentuh permukaan bumi. Hal ini dikarenakan bumi memiliki medan magnetik. Selain itu, kerapatan atmosfer bumi yang mencapai 1019 partikel/cm3, menjadikan semakin kecil kemungkinan partikel angin matahari mencai bumi. Walaupun demikian, ada beberapa partikel angin matahari yang mampu melewati atmosfer bumi dan menabrak molekul-molekul udara. Tabrakan itu menyebabkan munculnya aurora yang berwujud sinar cemerlang. Sinar tersebut tercipta karena molekul-molekul udara menyerap energi partikel dan memancarkannya kembali dalam bentuk cahaya tampak, aurora di atas kutub utara disebut aurora borealis dan yang berada di atas kutub selatan disebut aurora australis.

 

Aurora terjadi di kutub karena kutub magnet bumi juga berada dekat dengan kutub geografis. Kutub utara magnet bumi terletak di dekat bumi dan sebaliknya. Dengan demikian partikel bermuatan yang memasuki atmosfer bumi akan bergerak dalam lintasan spiral menuju kutub-kutub magnet bumi.
 
 

Minggu, 18 Agustus 2013

My Poems #4

Selalu Salah

Terdengar suara desakan hati
Yang meratap dan memanggil setiap desahan nafas
Tapi tak kan terngiang oleh hangatnya embun pagi
Laksana aan yang selalu menggumpal di angkasa luar
Bimbang dan gelisah seakan menjadi Satu
Resah memandang dari kejauhan ketika aku tersenyum
Memang tak ka nada lagi hari seperti ini
Tapi kan ku coba tuk temukan langkah
Niat tulus seolah hanya bisikan di ruang semu
Dan caci maki siap tersengar oleh rintihan purnama
Hanya sebatas angan yang dapat ku saksikan
Dan semua dari apa yang aku usahakan
Semua siasia tak tersisa
Lalu hancur menjadi kepingkeping debu yang bertaburan
Dan aku selalu bertanyatanya
Bukankah aku ingin menjadi seseorang?
Bukankah aku melakukan hal yang benar?
Salahkah aku, tatkala aku ingin berubah?
Jawab aku sekarang!
Dan kau boleh tertawa setelahnya




Magelang, 18 Agustus 2013
Puji Nurani


Jumat, 02 Agustus 2013

Mikroskop dan Bagian-Bagiannya

Bagian-Bagian Mikroskop



Mikroskop terdiri atas:

A.Lensa Okuler
Lensa Okuler adalah lensa yang berfungsi untuk melihat benda sehingga benda tampak lebih besar.

B.Tabung Mikroskop
Tabung mikroskop berfungsi untuk mengatur fokus.tabung ini dapat di turunkan dan dapat di naikkan.
C.Revolver
Revolver letaknya menempel di tabung mikroskop.revolver dapat di putar untuk memilih lensa objektif yang akan digunakan.
D.Tombol pengatur kasar(Makrometer)
Tombol pengatur kasar berfungsi untuk memfokuskan bayangan benda,dapat diputar untuk menaikkan dan menurunkan tabung mikroskop,

E.Tombol pengatur halus(Mikrometer)
Tombol pengatur halus merupakan tombol yang berfungsi untuk memfokuskan bayangan benda,sehingga bayangan benda lebih jelas terlihat.

F.Lensa Objektif
Lensa Objektif berfungsi untuk membentuk bayangan benda dan memperbesar benda yang akan diamati.pada umumnya,mikroskop mempunyai 3 jenis lensa objektif dengan perbesaran yang berbeda,yaitu 4x,10x,dan 40x.

G.Lensa Mikroskop
Lengan mikroskop berfungsi sebagai pegangan pada saat mikroskop akan dipindahkan atau diangkat.

H.Meja mikroskop atau meja sediaan
Meja mikroskop berfungsi untuk menyimpan objek yang akan diamati.

I.Penjepit Objek
Agar sediaan tidak bergerak dan kedudukannya stabil pada saat pengamatan,objek di jepit menggunakan penjepit objek.

J.Kondensator
Kondensator ialah alat yang berfungsi unutuk mengatur intensitas cahaya yang masuk kedalam mikroskop.tidak semua mikroskop mempunyai kondensor.

K.Diafragma
Diafragma adalah bagian berupa lubang yang dapat diatur besar kecilnya.fungsi dari diafragma adalah mengatur banyak sedikitnya cahaya yang masuk mkedalam mikroskop,.

L.Cermin
Cermin berfungsi untuk mengarahkan cahaya agar dapat masuk kedalam mikroskop.cermin ini dapat diputar kesegala arah dan mempunyai dua permukaan ,yaitu datar dan cekung yang masing-masing mempunyai fungsi berbeda.

M.Kaki Mikroskop
Kaki mikroskop merupakan bagian paling bawah dari mikroskop.bagian ini berfungsi untuk menjaga agar mikroskop tetap berdiri diatas meja.
Bagaimanakah cara menggunakan mikroskop dengan benar? Untuk dapat menggunakan mikroskop dengan benar perhatikan langkah-langkah sebagai berikut:
  1. Menemukan lapang pandang dengan mengatur penyinaran. Untuk menghasilkan lapang pandang adalah dengan mengatur cermin sambil melihat lensa okuler agar sinar masuk ke diafragma, sehingga menghasilkan pemantulan yang optimal. Bagian yang terang berbentuk bulat dinamakan lapang pandang.
  2. Mengatur fokus mikroskop atau bayangan dengan perbesaran lemah. Letakkan preparat di atas meja preparat, dijepit dengan penjepit sambil mengamati mikroskop dari samping tabung mikroskop diturunkan dengan pemutar kasar, lakukan secara hati-hati hingga lensa objektif tidak menyentuh preparat. Kemudian lihatlah melalui lensa okuler dan dengan perlahan-lahan naikkanlah tabung mikroskop sehingga objek terlihat jelas. Setelah objek tampak, putarlah pemutar halus ke depan atau ke belakang sehingga mendapatkan bayangan sebaik-baiknya. Perbesaran mikroskop diperoleh dengan cara mengalikan angka pada lensa objektif dengan angka yang tertera pada lensa okuler. Misalnya 5x lensa objektif 10x lensa okuler maka perbesarannya 50x.
  3. Mengatur fokus mikroskop (bayangan dengan perbesaran kuat). Untuk memperoleh bayangan, dapat dilakukan dengan mengubah lensa objektif yang memiliki perbesaran lemah dengan yang lebih kuat. Misalnya lensa objektif perbesaran 5x dapat diganti dengan 10x atau 40x dengan memutar revolver sampai terdengar suara terdetak. Pemutar halus diputar ke depan atau ke belakang agar diperoleh objek yang lebih jelas.
  4. Mengatur Mikroskop dengan posisi disimpan. Setelah mikroskop selesai digunakan, aturlah mikroskop dengan posisi siap disimpan dengan cara sebagai berikut :

  • Tabung mikroskop dinaikkan.
  • Preparat diambil.
  • Lensa objektif terlemah diturunkan serendah-rendahnya diputar persis sampai lubang meja mikroskop.
  • Diafragma ditutup kembali.
  • Kondensor diturunkan dan cermin dalam posisi tegak.
  • Angkat mikroskop dengan hati-hati tangan kanan memegang lengan mikrokop dan topang kaki mikroskop dengan tangan kiri kemudian masukkan ke tempatnya dan dikunci.

Cara membuat preparat:
  1. Membuat preparat tanpa penyayatan. Untuk membuat preparat basah tanpa penyayatan, misalnya pada waktu pengamatan mikroorganisme yang ada dalam air. Caranya: air yang akan diamati, diambil dengan pipet tetes dan tempatkan pada kaca obyektif dan tutup dengan kaca penutup, amati dengan mikroskop.
  2. Membuat preparat dengan penyayatan. Membuat preparat pada organ tubuh organisme, misalnya penampang daun, batang, akar, otot dan lain-lain. Caranya: menyayat organ setipis mungkin, untuk membuat sayatan yang baik dan tipis dengan alat yang disebut mikrotom, tetapi bila tidak mempunyai mikrotom dapat dengan menggunakan silet yang tajam.



Perkembangan Model Atom dari Dalton sampai Mekanika Kuantum

Ini dia perkembangan model atom dari DALTON sampai MEKANIKA KUANTUM

Model Atom Dalton

PADA TAHUN 1803, JOHN DALTON MENGEMUKAKAN MENGEMUKAKAN PENDAPATNAYA TENTANG ATOM. TEORI ATOM DALTON DIDASARKAN PADA DUA HUKUM, YAITU HUKUM KEKEKALAN MASSA (HUKUM LAVOISIER) DAN HUKUM SUSUNAN TETAP (HUKUM PROUTS). LAVOSIER MENNYATAKAN BAHWA "MASSA TOTAL ZAT-ZAT SEBELUM REAKSI AKAN SELALU SAMA DENGAN MASSA TOTAL ZAT-ZAT HASIL REAKSI". SEDANGKAN PROUTS MENYATAKAN BAHWA "PERBANDINGAN MASSA UNSUR-UNSUR DALAM SUATU SENYAWA SELALU TETAP". 

ATOM MERUPAKAN BAGIAN TERKECIL DARI MATERI YANG SUDAH TIDAK DAPAT DIBAGI LAGI

  1. Atom digambarkan sebagai bola pejal yang sangat kecil, suatu unsur memiliki atom-atom yang identik dan berbeda untuk unsur yang berbeda
  2. Atom-atom bergabung membentuk senyawa dengan perbandingan bilangan bulat dan sederhana. Misalnya air terdiri atom-atom hidrogen dan atom-atom oksigen
  3. Reaksi kimia merupakan pemisahan atau penggabungan atau penyusunan kembali dari atom-atom, sehingga atom tidak dapat diciptakan atau dimusnahkan.
Model Atom Dalton seperti bola pejal

Percobaan Lavosier

undefined
Mula-mula tinggi cairan merkuri dalam wadah yang berisi udara adalah A, tetapi setelah beberapa hari merkuri naik ke B dan ketinggian ini tetap. Beda tinggi A dan B menyatakan volume udara yang digunakan oleh merkuri dalam pembentukan bubuk merah (merkuri oksida). Untuk menguji fakta ini, Lavoisier mengumpulkan merkuri oksida, kemudian dipanaskan lagi. Bubuk merah ini akan terurai menjadi cairan merkuri dan sejumlah volume gas (oksigen) yang jumlahnya sama dengan udara yang dibutuhkan dalam percobaan pertama
Percobaan Joseph Pruost
Pada tahun 1799 Proust menemukan bahwa senyawa tembaga karbonat baik yang dihasilkan
melalui sintesis di laboratorium maupun yang diperoleh di alam memiliki susunan yang tetap.
Percobaan 
ke-
Sebelum pemanasan (g Mg)
Setelah pemanasan (g MgO)
Perbandingan Mg/MgO
1
0,62
1,02
0,62/1,02 = 0,61
2
0,48
0,79
0,48/0,79 = 0,60
3
0,36
0,60
0,36/0,60 = 0,60

Kelemahan Model Atom Dalton

Kelebihan Mulai membangkitkan minat terhadap penelitian mengenai model atom
Kelemahan 
Teori atom Dalton tidak dapat menerangkan suatu larutan dapat menghantarkan arus listrik. Bagaimana mungkin bola pejal dapat menghantarkan arus listrik? padahal listrik adalah elektron yang bergerak. Berarti ada partikel lain yang dapat menghantarkan arus listrik.



Model Atom Thomson

Berdasarkan penemuan tabung katode yang lebih baik olehWilliam Crookers , maka J.J. Thomson meneliti lebih lanjut tentang sinar katode dan dapat dipastikan bahwa sinar katode merupakan partikel, sebab dapat memutar baling-baling yang diletakkan diantara katode dan anode. Dari hasil percobaan ini, Thomson menyatakan bahwa sinar katode merupakan partikel penyusun atom (partikel subatom) yang bermuatan negatif dan selanjutnya disebutelektron .
Atom merupakan partikel yang bersifat netral, oleh karena elektron bermuatan negatif, maka harus ada partikel lain yang bermuatan positifuntuk menetrallkan muatan negatif elektron tersebut. Dari penemuannya tersebut, Thomson memperbaiki kelemahan dari teori atom dalton dan mengemukakan teori atomnya yang dikenal sebagai Teori Atom Thomson. 
Yang menyatakan bahwa:
"Atom merupakan bola pejal yang bermuatan positif dan didalamya tersebar muatan negatif elektron"
Model atomini dapat digambarkan sebagai jambu biji yang sudah dikelupas kulitnya. biji jambu menggambarkan elektron yang tersebar marata dalam bola daging jambu yang pejal, yang pada model atom Thomson dianalogikan sebagai bola positif yang pejal.
Dengan Percobaan Sinar Katode Thomson mengemukakan tentang elektron, sehingga disebut sebagai penemu elektron
Sinar dihasilkan dari katoda
didekatkan dengan magnet sinar dibelokkan
Dengan magnet sinar dibelokkan

Kelebihan dan Kelemahan Model Atom Thomson

Kelebihan Membuktikan adanya partikel lain yang bermuatan negatif dalam atom. Berarti atom bukan merupakan bagian terkecil dari suatu unsur.
Kelemahan Model Thomson ini tidak dapat menjelaskan susunan muatan positif dan negatif dalam bola atom tersebut.



MODEL ATOM

Pengetahuan para ilmuwan tentang atom bukan berdasarkan pengamatan langsung terhadap atom per atom, sebab ato terlalu kecil untuk dapat diamati dan diukur sacara langsung. Diameter atom dinyakini berkisar antara 30 sampai 150 pm. Dengan alat pembesar apapun kita belum dapat melihat atom, tetapi gejala yang ditimbulkan oleh atom itu dapat diukur seperti jejak atom, nyala, difraksi, dan lain-lain. Teori-teori atom yang ada sekarang hanya merupakan model yang dibangun oleh para ilmuwan sebagai kesimpulan dari hasil berbagai kajian teoritis dan gejala empiris dengan berbagai pendekatan dan metode ilmiah. Itulah sebabnya terdapat beberapa model atom yang telah dikembangkan dan dipublikasikan menurut tenemuan-tenemuan yang secara sinergetis saling mendukung atau bahkan menolak usulan model atom sebelumnya. Sampai saat ini, teori atom yang paling muktahir adalah berdasarkan teori mekanika kuantum atau mekanika gelombang dengan berbagai asumsi dan teorema.

Perkembangan Model Atom

Definisi awal tentang konsep atom berlangsung > 2000 thn. Dulu atom dianggap sebagai bola keras sedangkan sekarang atom dianggap sebagai awan materi yang kompleks. Dibawah ini akan dipaparkan konsep Yunani tentang atom:
  1. Pandangan filosof Yunani
    Atom adalah Konsep kemampuan untuk dipecah yg tiada berakhir
  2. Leucippus (Abad ke-5 SM)
    Ada batas kemampuan untuk dibagi, sehingga harus ada bagian yang tidak dapat dibagi lagi
  3. Democritus (380-470 SM)
    A: tidak, tomos: dibagi.
     Jadi atom adalah partikel yang tidak dapat dibagi lagi. Atom setiap unsur memilki bentuk & ukuran yang berbeda.
  4. Lucretius 
    Sifat atom suatu bahan dalam “ On the Nature of Things 
Perkembangan Model Atom Secara Ilmiah
Pengembangan konsep atom-atom secara ilmiah dimulai oleh John Dalton (1805), kemudian dilanjutkan oleh Thomson (1897), Rutherford (1911) dan disempurnakan oleh Bohr (1914). Setelah model atom Bohr, Heisenberg mengajukan model atom yang lebih dikenal dengan model atom mekanika gelombang atau model atom modern.
Hasil eksperimen yang memperkuat konsep atom ini menghasilkan gambaran mengenai susunan partikel-partikel tersebut di dalam atom. Gambaran ini berfungsi untuk memudahkan dalam memahami sifat-sifat kimia suatu atom. Gambaran susunan partikel-partikel dasar dalam atom disebut model atom.



MODEL ATOM

Pengetahuan para ilmuwan tentang atom bukan berdasarkan pengamatan langsung terhadap atom per atom, sebab ato terlalu kecil untuk dapat diamati dan diukur sacara langsung. Diameter atom dinyakini berkisar antara 30 sampai 150 pm. Dengan alat pembesar apapun kita belum dapat melihat atom, tetapi gejala yang ditimbulkan oleh atom itu dapat diukur seperti jejak atom, nyala, difraksi, dan lain-lain. Teori-teori atom yang ada sekarang hanya merupakan model yang dibangun oleh para ilmuwan sebagai kesimpulan dari hasil berbagai kajian teoritis dan gejala empiris dengan berbagai pendekatan dan metode ilmiah. Itulah sebabnya terdapat beberapa model atom yang telah dikembangkan dan dipublikasikan menurut tenemuan-tenemuan yang secara sinergetis saling mendukung atau bahkan menolak usulan model atom sebelumnya. Sampai saat ini, teori atom yang paling muktahir adalah berdasarkan teori mekanika kuantum atau mekanika gelombang dengan berbagai asumsi dan teorema.

Perkembangan Model Atom

Definisi awal tentang konsep atom berlangsung > 2000 thn. Dulu atom dianggap sebagai bola keras sedangkan sekarang atom dianggap sebagai awan materi yang kompleks. Dibawah ini akan dipaparkan konsep Yunani tentang atom:
  1. Pandangan filosof Yunani
    Atom adalah Konsep kemampuan untuk dipecah yg tiada berakhir
  2. Leucippus (Abad ke-5 SM)
    Ada batas kemampuan untuk dibagi, sehingga harus ada bagian yang tidak dapat dibagi lagi
  3. Democritus (380-470 SM)
    A: tidak, tomos: dibagi.
     Jadi atom adalah partikel yang tidak dapat dibagi lagi. Atom setiap unsur memilki bentuk & ukuran yang berbeda.
  4. Lucretius 
    Sifat atom suatu bahan dalam “ On the Nature of Things 
Perkembangan Model Atom Secara Ilmiah
Pengembangan konsep atom-atom secara ilmiah dimulai oleh John Dalton (1805), kemudian dilanjutkan oleh Thomson (1897), Rutherford (1911) dan disempurnakan oleh Bohr (1914). Setelah model atom Bohr, Heisenberg mengajukan model atom yang lebih dikenal dengan model atom mekanika gelombang atau model atom modern.
Hasil eksperimen yang memperkuat konsep atom ini menghasilkan gambaran mengenai susunan partikel-partikel tersebut di dalam atom. Gambaran ini berfungsi untuk memudahkan dalam memahami sifat-sifat kimia suatu atom. Gambaran susunan partikel-partikel dasar dalam atom disebut model atom.



Model Atom Bohr

Pada tahun 1913, pakar fisika Denmark bernama Neils Bohrmemperbaiki kegagalan atom Rutherford melalui percobaannya tentang spektrum atom hidrogen. Percobaannya ini berhasil memberikan gambaran keadaan elektron dalam menempati daerah disekitar inti atom. Penjelasan Bohr tentang atom hidrogen melibatkan gabungan antara teori klasik dari Rutherford dan teori kuantum dari Planck, diungkapkan dengan empat postulat, sebagai berikut:
1. Hanya ada seperangkat orbit tertentu yang diperbolehkan bagi satu elektron dalam atom hidrogen. Orbit ini dikenal sebagai keadaan gerak stasioner (menetap) elektron dan merupakan lintasan melingkar disekeliling inti.
2. Selama elektron berada dalam lintasan stasioner, energi elektron tetap sehingga tidak ada energi dalam bentuk radiasi yang dipancarkan maupun diserap.
3. Elektron hanya dapat berpindah dari satu lintasan stasioner ke lintasan stasioner lain. Pada peralihan ini, sejumlah energi tertentu terlibat, besarnya sesuai dengan persamaan planck, Δ E = hv .
4. Lintasan stasioner yang dibolehkan memilki besaran dengan sifat-sifat tertentu, terutama sifat yang disebut momentum sudut . Besarnya momentum sudut merupakan kelipatan dari h/2∏ atau n h/2∏, dengan n adalah bilangan bulat dan h tetapan planck.
Menurut model atom bohr, elektron-elektron mengelilingi inti pada lintasan-lintasan tertentu yang disebut kulit elektron atau tingkat energi. Tingkat energi paling rendah adalah kulit elektron yang terletak paling dalam, semakin keluar semakin besar nomor kulitnya dan semakin tinggi tingkat energinya.
Percobaan Bohr

Kelebihan dan Kelemahan

Kelebihan 
atom Bohr adalah bahwa atom terdiri dari beberapa kulit untuk tempat berpindahnya elektron.
Kelemahan 
model atom ini adalah tidak dapat menjelaskan efek Zeeman dan efek Strack



Model Atom Modern

Model atom mekanika kuantum dikembangkan oleh Erwin Schrodinger (1926).Sebelum Erwin Schrodinger, seorang ahli dari Jerman Werner Heisenberg mengembangkan teori mekanika kuantum yang dikenal dengan prinsip ketidakpastian yaitu “Tidak mungkin dapat ditentukan kedudukan dan momentum suatu benda secara seksama pada saat bersamaan, yang dapat ditentukan adalah kebolehjadian menemukan elektron pada jarak tertentu dari inti atom”.
Daerah ruang di sekitar inti dengan kebolehjadian untuk mendapatkan elektron disebut orbital. Bentuk dan tingkat energi orbital dirumuskan oleh Erwin Schrodinger.Erwin Schrodinger memecahkan suatu persamaan untuk mendapatkan fungsi gelombang untuk menggambarkan batas kemungkinan ditemukannya elektron dalam tiga dimensi.
Persamaan Schrodinger
x,y dan z
Y
m
ђ 
E
V
= Posisi dalam tiga dimensi 
= Fungsi gelombang
= massa
= h/2p dimana h = konstanta plank dan p = 3,14
= Energi total
= Energi potensial
Model atom dengan orbital lintasan elektron ini disebut model atom modern atau model atom mekanika kuantum yang berlaku sampai saat ini, seperti terlihat pada gambar berikut ini.


Model Atom Modern

Model atom mekanika kuantum dikembangkan oleh Erwin Schrodinger (1926).Sebelum Erwin Schrodinger, seorang ahli dari Jerman Werner Heisenberg mengembangkan teori mekanika kuantum yang dikenal dengan prinsip ketidakpastian yaitu “Tidak mungkin dapat ditentukan kedudukan dan momentum suatu benda secara seksama pada saat bersamaan, yang dapat ditentukan adalah kebolehjadian menemukan elektron pada jarak tertentu dari inti atom”.
Daerah ruang di sekitar inti dengan kebolehjadian untuk mendapatkan elektron disebut orbital. Bentuk dan tingkat energi orbital dirumuskan oleh Erwin Schrodinger.Erwin Schrodinger memecahkan suatu persamaan untuk mendapatkan fungsi gelombang untuk menggambarkan batas kemungkinan ditemukannya elektron dalam tiga dimensi.
Persamaan Schrodinger
x,y dan z
Y
m
ђ 
E
V
= Posisi dalam tiga dimensi 
= Fungsi gelombang
= massa
= h/2p dimana h = konstanta plank dan p = 3,14
= Energi total
= Energi potensial
Model atom dengan orbital lintasan elektron ini disebut model atom modern atau model atom mekanika kuantum yang berlaku sampai saat ini, seperti terlihat pada gambar berikut ini.
Model atom mutakhir atau model atom mekanika gelombang
Awan elektron disekitar inti menunjukan tempat kebolehjadian elektron. Orbital menggambarkan tingkat energi elektron. Orbital-orbital dengan tingkat energi yang sama atau hampir sama akan membentuk sub kulit. Beberapa sub kulit bergabung membentuk kulit.Dengan demikian kulit terdiri dari beberapa sub kulit dan subkulit terdiri dari beberapa orbital. Walaupun posisi kulitnya sama tetapi posisi orbitalnya belum tentu sama.
CIRI KHAS MODEL ATOM MEKANIKA GELOMBANG
1. Gerakan elektron memiliki sifat gelombang, sehingga lintasannya (orbitnya) tidak stasioner seperti model Bohr, tetapi mengikuti penyelesaian kuadrat fungsi gelombang yang disebut orbital (bentuk tiga dimensi darikebolehjadian paling besar ditemukannya elektron dengan keadaan tertentu dalam suatu atom)
2. Bentuk dan ukuran orbital bergantung pada harga dari ketiga bilangan kuantumnya. (Elektron yang menempati orbital dinyatakan dalam bilangan kuantum tersebut)
3. Posisi elektron sejauh 0,529 Amstrong dari inti H menurut Bohr bukannya sesuatu yang pasti, tetapi bolehjadi merupakan peluang terbesar ditemukannya elektron 

Percobaan chadwick

Kelemahan Model Atom Modern

Persamaan gelombang Schrodinger hanya dapat diterapkan secara eksak untuk partikel dalam kotak dan atom dengan elektron tunggal

MODEL ATOM MEKANIKA KUANTUM-MODEL ATOM MODERN YANG DIPAKAI SAMPAI SAAT INI

Salah satu kelemahan model atom Bohr hanya bisa dipakai untuk menjelaskan model atom hydrogen dan atom atau ion yang memiliki konfigurasi elektron seperti atom hydrogen, dan tidak bisa menjelaskan untuk atom yang memiliki banyak elektron.
Werner heinsberg (1901-1976), Louis de Broglie (1892-1987), dan Erwin Schrödinger (1887-1961) merupakan para ilmuwan yang menyumbang berkembangnya model atom modern atau yang disebut sebagai model atom mekanika kuantum .
Pernyataan de Broglie yang menyatakan bahwa partikel dapat bersifat seperti gelombang telah menginspirasi Schrödinger untuk menyusun model atomnya dengan memperhatikan sifat elektron bukan hanya sebagai partikel tapi juga sebagai gelombang, artinya dia menggunakan dualisme sifat elektron.
Menurut Schrödinger elektron yang terikat pada inti atom dapat dianggap memiliki sifat sama seperti “standing wave”, anda bisa membayangkan gelombang standing wave ini seperti senar pada gitar (lihat gambar). Ciri standing wave ini ujung-ujungnya harus memiliki simpul sehingga ½ gelombang yang dihasilkan berjumlah bilangan bulat.
Hal yang sama dapat diterapkan apabila kita menganggap elektron dalam atom hydrogen sebagai “standing wave”. Hanya orbit dengan dengan jumlah ½ gelombang tertentu saja yang diijinkan, orbit dengan jumlah ½ gelombang yang bukan merupakan bilangan bulat tidak diijinkam. Hal inilah penjelasan yang rasional mengapa energi dalam atom hydrogen terkuantisasi. (lihat gambar)
Schrödinger kemudian mengajukan persamaan yang kemudian dikenal dengan nama “persamaan gelombang Schrödinger” yaitu :
H? = E?
? disebut sebagai fungsi gelombang, H adalah satu set intruksi persamaan matematika yang disebut sebagai operator, dan E menunjukan total energi dari atom. Penyelesaian persamaan ini menghasilkan berbagai bentuk penyelesaian dimana setiap penyelesain ini melibatkan fungsi gelombang ? yang dikarakteristikkan oleh sejumlah nilai E. Fungsi gelombang ? yang spesisfik dari penyelesaian persamaan gelombang Schrödinger disebut sebagai “orbital”
Apakah orbital itu? Orbital adalah daerah kebolehjadian kita menemukan elektron dalam suatu atom atau bisa dikatakan daerah dimana kemungkinan besar kita dapat menemukan elektron dalam suatu atom.
Bedakan dengan istilah orbit yang dipakai di model atom Bohr. Orbit berupa lintasan dimana kita bisa tahu lintasan dimana elektron mengelilingi inti, tapi pada orbital kita tidak tahu bagaimana bentuk lintasan elektron yang sedang mengelilingi inti. Yang dapat kita ketahui adalah dibagian mana kemungkinan besar kita dapat menemukan elektron dalam atom.
Werner Heisenberg menjelaskan secara gamblang tentang sifat alami dari orbital, analisis matematika yang dihasilkannya menyatakan bahwa kita tidak bisa secara pasti menentukan posisi serta momentum suatu partikel pada kisaran waktu tertentu. Secara matematis azas ketidakpastian Heisenberg ditulis sebagai berikut:
?x . ?(mv) ? h/4?
?x adalah ketidakpastian menentukan posisi dan ?(mv) adalah ketidakpastian momentum dan h adalah konstanta Plank. Arti persamaan diatas adalah semakin akurat kita menentukan posisi suatu partikel maka semakin tidak akurat nilai momentum yang kita dapatkan, dan sebaliknya.
Pembatasan ini sangat penting bila kita memmpelajari partikel yang sangat kecil seperti elektron, oleh sebab itulah kita tidak bisa menentukan secara pasti posisi elektron yang sedang mengelilingi inti atom seperti yang ditunjukan oleh model atom Bohr, dimana elektron bergerak dalam orbit yang berbentuk lingkaran. Disinilah mulai diterimanya model atom mekanika kuantum yang diajukan oleh Schrödinger.
Sesuai dengan azaz Heisenberg ini maka fungsi gelombang tidak dapat menjelaskan secara detail pergerakan elektron dalam atom, kecuali fungsi gelombang kuadrat (?2) yang dapat diartikan sebagai probabilitas distribusi elektron dalam orbital. Hal ini bisa dipakai unutk menggambarkan bentuk orbital dalam bentuk distribusi elektron, atau dikenal sebagai peta densitas.

Search

Pages

Popular Posts